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Dynamics of coevolutive processes

J. Ferna´ndez,* A. Plastino,† L. Diambra,‡ and C. Mostaccio§

Physics Department, National University of La Plata, Casilla de Correo 727, 1900 La Plata, Argentina
~Received 13 November 1997!

Two different models for biological evolution that exhibit critical self-organization and punctuated equilib-
rium are studied with a view to numerically compare two possible types of adaptive dynamics: A species can
evolve towards states of increasingly better adaptative abilities via the simple, original Darwinian scenario
~evolution in a stationary environment! or in the recently conceived coevolutive fashion. A numerical study of
these two types of adaptative dynamics is performed, within the framework of two distinct mathematical
models of evolution.@S1063-651X~98!02205-3#

PACS number~s!: 87.10.1e, 05.40.1j
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I. INTRODUCTION

In recent years there has been great activity in the stud
physical models able to mimic biological evolutionary pr
cesses. As a consequence, much light has been shed o
verse features of the rich Darwinian landscape. Of cou
intriguing problems still await elucidation. Among them w
single out here the following one. It is generally accep
that the traditional view of Darwinian evolution, according
which the most fit of random mutants are selected, face
major problem@1–7#: It is much too slow to account for rea
evolution. Bak has lucidly described the difficulty@1#: If, for
the sake of argument, we imagine the outer world frozen~for
a while! and try to construct from scratch an equally fit sp
cies by recourse toengineering techniques rather than b
evolution, we will be forced to accept that eons are need
By starting at a random configuration one certainly w
reach a wrong and much less fit maximum. It would be n
essary to systematically go through all configurations,
volving exponentially large times. Shapiro@8# and Hoyle and
Wickramasinghe@9# have developed similar argumentiv
lines.

Coevolution, as an alternative to simple evolution in
fixed environment, has been proposed as a way out of
dilemma. The dynamical script for such a process read
follows: Individual species adapt in slow fashion to a chan
ing environment without ever climbing high fitness barrie
which allows for a fast evolutionary process@1#. Quoting
Bak’s words@1#, ‘‘What the individual sees as his superio
fitness may better be characterized as a self-consistent
gration into a complex system. Biology constructed the
lution to the fitness problem together with the problem itse
It is much simpler to construct a complicated crosswo
puzzle by a coevolutive process than to solve it by trial a
error.’’

In order to fix the terminology we will agree to reserv
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the word ‘‘evolution’’ to describe the traditional Darwinia
point of view: Species ‘‘adapt’’ to a fixed environment, t
which the remaining species, of course, ‘‘contribute.’’ ‘‘Co
evolution,’’ instead, refers to a dynamical process in wh
all species simultaneously ‘‘evolve,’’ that is, a single spec
must adapt to a changing environment in a self-consis
fashion.

Some recent results indicate that the latter adap
mechanism yields better results than the former in some e
lutive scenarios@10,11#. However,a test of this assertion
within the context of physical models (coevolutive dynam
systems) remains to be performed. Remedying this situation
constitutes the leitmotif of the present effort, where we tac
the evolution vs coevolution competition~the investigation
of which should motivate any worker in the field! in numeri-
cal terms, by studying the different dynamics within th
framework of two different models:~i! the celebratedNKC
~the accepted terminology! models of Kauffman and Johnse
@12,13#, which have proved to be of great utility in explain
ing many evolutionary features of the terrestrial ecosyst
~for example, radiation and stasis as generic properties,
Cambrian explosion, Permian quiescence, and rederiva
of Von Baer’s laws! @12,14#, and~ii ! recently a more genera
model of biological evolution@15,16# that exhibits robust
critical behavior with punctuated equilibrium@17# without
external tuning. Interesting ‘‘realistic’’ features of this mod
include the prediction of power laws governing the extin
tion distribution curves@18# and its ability to reproduce Sep
kosky’s evolutive activity curves@19# and lifetime species
distribution curve@19,20# constructed on the basis of foss
records.

We intend to provide some answers concerning the
evolution vs evolution question by comparing fitnesses
sulting from different dynamics~i.e., coevolutive vs evolu-
tive ones! as applied within the framework of a given mode
in the two cases enumerated above. ‘‘Fitness’’ is a relat
concept and can be meaningfully applied only within a giv
ecology. Thus the mean fitness of some species in a g
ecology~read here, a given model! can be compared with its
mean fitness in the same model~but with a different evolu-
tive dynamics!. We perform this kind of comparison her
within the framework of the two models referred to abov
@Indeed, we comparedifferent dynamics~coevolutive and
evolutive!, not different ecologies.# Once the fitness land
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5898 57FERNÁNDEZ, PLASTINO, DIAMBRA, AND MOSTACCIO
scape is defined~for instance, by giving theN, K, and C
values in the case of the Kauffman models!, the model’s
statistical nature is fixed~as, for example, the number o
local maxima and their distribution, see@12#!. Given the
landscape, different adaptive strategies~and diverse dynam
ics! become possible~e.g., different mutation rates and g
netic material exchange among individuals! in order to attain
either a global maximum or a ‘‘good’’ local one. The effe
tiveness of recombination, for instance, depends in su
ways upon the ruggedness of the adaptive landscape~see
Chap. 2 of@12#!. It is then obligatory to compare strategie
for fixed values of the above parameters, i.e., for a given t
of surface, and such will be our philosophy in studying ev
lution vs coevolution. Fitness is a landscape-related conc
Comparisons are to be made for the same surface. It sh
be remarked that, within the present context ‘‘more fit’’ do
not mean ‘‘more complex.’’ We are not discussing compl
evolution here. The ‘‘complexity’’ of our ‘‘organisms’’ re-
mains approximately constant in our model insofar as
number of ‘‘genes’’ behaves in such a manner. A termin
logical point merits some discussion. We know that the
evolutionary picture is not incompatible with Darwin
theory since the species are still evolving by random mu
tions and selection of the fitter variants, but in a varia
landscape. The coevolutionary picture, however, may h
some consequences at the macroevolutionary level, suc
punctuated equilibrium, that Darwin apparently was n
aware of. We shall differentiate between ‘‘simple’’ evolu
tion, or the original Darwinian mechanism, and coevolutio
or the neo-Darwinian one.

II. THE NKC MODEL

In Kauffman and Johnsen’sNKC models @12,13# each
species is represented by anN-site chain. The state of eac
site ~or gene! may adopt one of two possible values: zero
one. The degree to which a species is adapted to the e
ronment is numerically measured by the so-called fitnessF)
variable. The larger theF value, the better our species
adapted to its environment. For thekth speciesFk is ob-
tained by summing over the site contributions. The site c
tribution, in turn, depends on~i! the state of other (K, say!
genes of thekth chain and~ii ! the states ofother species’
genes~amounting toC genes, say!. The fitness contribution
of each site, for each of the 2K1C11 combinations of states
of itself, on the one hand, and each of theK1C other sites
influencing it, on the other, is assigned at random at
moment of switching on the simulation process. At this m
ment, theK1C sites that are to influence any particular s
are randomly chosen as well. This choice is not modifi
afterward, during the course of the simulation process. I
we shall deal withM species~a number that remains fixed!.

The evolutive process proceeds as follows. We start fr
a random initial configuration~i.e., theNi initial site states,
i 51, . . . ,M , are randomly chosen!. In eachof a ~long! se-
ries of time steps a particular species~the j th, say! and one
of its associated sites are both randomly selected. This
state is modified and the~new! F j value is computed. If, as a
consequence of this modification,F j grows, this change in
the site state is retained. Otherwise, it is discarded and
site state is returned to its previous condition.
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Consider now single-species~again thej th one, say! evo-
lution. The site states of the remainingM21 ones are ‘‘fro-
zen.’’ In these circumstances the evolutive process may
visualized in terms of an ‘‘adaptive walk’’ on a rugged ‘‘fit
ness landscape’’~on the vertices of anN-dimensional Bool-
ean hypercube!. This adaptive walk stops if the species ge
trapped at a local maximum. Kauffman shows@4# that the
ruggedness of the fitness landscape grows withK ~in the
geneticist’s parlance,K measures the richness of epista
interactions among the components of the system!. For K
52 the structure of the fitness landscape is such that theF j
mean valuê F j&, evaluated over a large number of distin
simulation runs, is maximized.

In a coevolutive system~i.e., all species simultaneousl
evolve!, we need to consider the fact that both the fitness
the fitness landscape of each species become function
what happens with theother species~by virtue of the C
couplings!. Thus, because of the couplings, an adapt
move by one species projects onto the fitness landscape
the other species and alters those fitness landscapes mo
less profoundly. Over time, each species jockeys uphill on
own landscape and thereby deforms the landscapes o
ecological neighbors. Any such move by one species m
increase or decrease the fitness of each neighbor on the
ter’s landscape and alter the uphill adaptive walks access
to that neighbor.

It is interesting to mention that@12# in the coevolutive
scenario, the average value of^F j& over the M different
specieŝ ^F&& becomes a maximum for someK value~let us
call it K0) that depends uponM , N, andC. For K5K0 the
system evolves at the ‘‘edge of chaos,’’ that is, forK.K0

the ecosystem behaves as a quasiordered system~i.e., most
species freeze over and just a few undergo significant a
ations!. On the other hand, forK,K0 most species exhibi
variations during the evolution process, with some froz
islands. The edge of chaos corresponds to that situation
which a frozen component percolates across and covers
ecosystem. It has been analytically shown, for the spe
instanceK5N21 @5#, that under some conditions a pha
transition takes place from a frozen to a chaotic phase.

III. FERNÁ NDEZ, PLASTINO, AND DIAMBRA’S MODEL

We consider now the Ferna´ndez-Plastino-Diambra~FPD!
model of Ref. @15#. We deal withM distinct, interacting
biological species, each of which is represented by a ve
in RN. The componentsVa

i of VW i represent different pheno
typic features (a,b, . . . ) that are to be affected and mod
fied by the evolutive process. The degree to which thei th
species is ‘‘adapted’’ to the environment is represented b
quantityFi , to be called its fitness:

Fi5(
j

M

(
a,b

N

gab
i j Va

i Vb
j 1(

g

N

Vg
i Ag

i , i 51, . . . ,M ,

~1!

where the hypermatrixgab
i j provides the details of the inter

species interaction and the second summand on the r
hand side is an ‘‘environmental’’ one~see below!. We as-
sumegab

i j 52gba
j i . This is a reasonable assumption becau

if the a feature of the speciesi gives it a competitive edge
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57 5899DYNAMICS OF COEVOLUTIVE PROCESSES
against theb feature of thej species, the latter gives it, o
course, a competitive disadvantage against the former~sym-
biosis is excluded!. TheAg

i matrix mimics the environmenta
influence~such as climate and geography! over theg feature
of the i th species.

Of course, the components ofVW i must necessarily exhibi
some degree of correlation, as genes are simultaneousl
volved in several phenotypic features. We represent this
relation by recourse to mappings between a set ofk11 real
parameters and each of these components, i.e.,

f b :a0
i , . . . ,ak

i→Vb
i , ~2!

that is,

Vb
i 5 f b~a0

i , . . . ,ak
i !, ~3!

with f b an arbitrary function. The seta0
i , . . . ,ak

i definesin
fact the i species. As a result of biological mutations, the
parameters are allowed to vary with time.

The components ofV denote different phenotypic feature
of the species that this vector represents. These feature
correlated, via thea’s, in the manner just described. Gene
changes, here mimicked by modifications in thea values,
drive the evolutive process. The correlations just mentio
constitute an essential aspect of the model. Without them
given species might~eventually! attain, after a series of ap
propriate mutations,anyphenotypic feature whatsoever. Th
does not happen in nature. Changes in thea’s are to be
understood as reflecting uncorrelated genetic modificat
~changes in one or more bases in one or more genes!, while
changes in theV’s represent the concomitant phenotyp
modifications that, to a greater or lesser extent, will be m
tually correlated.

The system evolves in the following fashion. We st
with an arbitrary initial configuration~the ai ’s are randomly
chosen within@21,1#) and, in each of a series of time step
mutation effects are mimicked by slightly modifying theai ’s
for the l th species. Both the selection ofl and the nature of
the changes are random. The conditionuVW i u51 is enforced
so as to avoid unrestricted growth~with time! of uVW i u.

A particular mutation~change in a givena) is ‘‘ac-
cepted’’ if it increases the corresponding fitness~as a conse-
quence of such a mutationFi grows!. The a change is re-
tained in this case. Otherwise it is discarded and theai ’s end
up with their previous values.

Extensive numerical studies suggest that such a sys
never reaches an equilibrium situation, which could
guessed from the skew symmetry ofgi j @21#. The number of
speciesM is kept constant for the sake of simplicity.

Also for the sake of simplicity we choose, as in@15# ~i!
our hypermatrix in the form

gab
i j 5ki j dab ~4!

and ~ii ! Ag
i 50. Thus Eq.~1! reduces to

Fi5(
j 51

M

ki j VW
i
•VW j , i 51, . . . ,M , ~5!
in-
r-

e

are

d
a

s

-

t

,

m
e

whereki j 52kji . A given percentage of theki j ’s is set equal
to zero. The remainingki j ’s are randomly chosen within
@21,1# ~for i , j ). These values are kept constant throug
out. We callC the fraction of nonvanishingki j ’s. These sim-
plifications notwithstanding, a complex enough dynamics
sues that can account for important details of fossil reco
As polynomials are the basis of any reasonable funct
space, the ‘‘correlation functions’’ discussed above can
chosen in a simple and general fashion ask-degree polyno-
mials @cf. Eq. ~3!#

f b5 (
n50

k

anxn, x5b/N, ~6!

so that

Vb
i 5 (

n50

k

an
i ~b/N!n.

IV. COMPARATIVE DYNAMICS

A. NKC model

We present here our main results, beginning with tho
obtained with reference toNKC models. We compare evo
lutive vs coevolutive dynamics within a constant scenar
that is, for identical values ofM , N, K, andC ~remember
that we compare different adaptive dynamics,not different
ecologies!.

The typical temporal evolution ofF for a single species is
depicted in Fig. 1. We takeM520, N510, K54, andC
53. In the coevolutive scenarioF starts increasing rapidly
and then stabilizes itself, with oscillations around some fix
value. After 30 000 generations no deviations from this p
tern are appreciated, i.e., equilibrium is not reached. Figu
also displays, for the sake of comparison~identical values of
M , N, K, and C), the single-species fitnessF of a given
species in a Darwinian evolutionary scenario (M21 species
frozen!. Equilibrium is rapidly reached.

These results can be better understood with referenc
Fig. 2, a fitness versusK plot. Here we study the coevolu

FIG. 1. A typical example of single-species,NKC fitness evo-
lution ~vertical axis, arbitrary units!. The full line corresponds to
coevolutive results, the dashed line to a simple Darwinian scena
In both casesM520, N510, K54, andC53.
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5900 57FERNÁNDEZ, PLASTINO, DIAMBRA, AND MOSTACCIO
tionary mean fitnesŝ̂ F&& and the Darwinian mean̂F&. The
average over distinct simulations is taken by running 30
them in coevolutive scenarios~averaging over all coevolving
species! and 100 in Darwinian evolutive ones~30 000 time
steps have been taken in the oscillatory regime of the for
in order to compute mean values!.

Features already described by Kauffman are also pre
in Fig. 2. The Darwinian mutant variant^F& exhibits a peak
at K52. On the other hand, the coevolutive^^F&& peak is
attained at someC-dependentK0, where it is supposed tha
the system evolves at the edge of chaos: ForK.K0 the
evolutionary process is a ‘‘poor’’ one, as the system
mostly frozen, forK,K0 the system behaves in a rath
chaotic fashion, which diminishes its adaptive capacities

Assume now that species evolve by changing the state
up to n sites in each time step, the actual number be
randomly determined. An important point to be mention
with regard to the simulations reported in Fig. 2 is thatthe
fitness level reached by the coevolutive system is sm
than the one found in the Darwinian process. This difference
is rather small for systems that evolve in such a fashion
only one gene is allowed to vary in each step~species ‘‘ex-
plore’’ variations in just one of the sites per step!, but grows
when we allow for largern values. This is seen in Fig. 2 fo
n54 situations, a better simulation of biological ‘‘reality.
The F value of species evolving in a frozen environme
augments because the larger exploration step allows for
cape from the trapping by some local maxima that sho
exploration steps would not be able to evade. The coev
tive F, instead, does not necessarily benefit from larger
ploration steps. The environment also changes rapidly an
accelerated ‘‘red queen’’ effect obtains@6#.

Deviations with respect to theF mean value are rathe
insensitive to the value ofK. In the coevolutive scenario th
standard deviation varies between 1.531022 and 331022.
In the Darwin scenario variations between 731022 and 9.5
31022 are encountered.

The average time needed to reach a stable evolutive
teau is plotted in Fig. 3. In the simple Darwinian case,

FIG. 2. Average equilibrium fitness versusK ~arbitrary units!.
The curves, from top to bottom, correspond, respectively, toa, the
Darwinian scenario, with the maximum number of mutations
generation~MMs! equal to 4;b, the same asa but with the MMs
equal to unity.c, the same asb but for a coevolutive scenario; an
d, the same asc but with the MMs equal to 4.
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average time is an average taken over all species. In
coevolutive case, the average time is the time needed
reach, for the first time, thatFmeanvalue corresponding to a
given value ofK. As suggested by Fig. 1, the former avera
time is smaller than the latter. Additionally, we display
Fig. 3 themaximumtime needed to reach a stable evoluti
plateau~Darwin scenario! and compare it to the minimum
time required to attain a stable situation~albeit with oscilla-
tions! in the coevolutive case. The conclusions reach
above with reference to the average time still apply. Th
results do not change if we modify~singly or jointly! C, M ,
and/orN.

B. FPD model

We consider now the FPD model@9,10#. Single-species
fitness is the subject of Figs. 4 and 5, where time evolutio
studied (M517, N57, C50.5, andK55 in both figures!.
Figure 4 corresponds to an arbitrary species coevolving w

r

FIG. 3. Relevant ‘‘evolution times’’ versusK ~arbitrary units!.
Top curve, average time~see the text! for a coevolutive system;
middle curves, minimum evolutionary time required~see the text!
for coevolutionary stability~full line! and maximum Darwinian
time needed to attain a stable adaptive plateau~dotted line! ~they
are of the same order of magnitude!; lower curve, Darwinian aver-
age time.

FIG. 4. Typical coevolutive single-species fitness versus ti
~arbitrary units! for the FPD model (M517, N57, C50.5, and
K55).
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57 5901DYNAMICS OF COEVOLUTIVE PROCESSES
the remaining ones, while Fig. 5 depicts Darwinian evolut
in a frozen environment~the remaining species do no
evolve!. Strong fitness oscillations are appreciated in the
evolutive case, while, in the Darwinian scenario, the sin
species fitness grows swiftly and monotonically, reachin
maximal plateau.

The time-average fitness in the coevolutive situation v
ishes@cf. Eq. ~5!; in summing overi , the antisymmetric na-
ture of theki j enforces this result independently of theC, M ,
or N values!. In the Darwinian instance, the time-avera
fitness is estimated as follows. The single-species fitnes
given by

Fi5(
j Þ i

ki j VW
iVW j5(

j ,a
ki j Va

i Va
j 5(

a
Va

i (
j Þ i

ki j Va
j

5(
a

Va
i Wa

i , ~7!

with

Wa
i [(

j Þ i
ki j Va

j . ~8!

As just one species evolves here, the species subindexi can
be disregarded without loss of generality. Thus

F5(
a

VaWa5uVW uuWW ucosu, ~9!

whereu is the angle between the vectorsVW andWW . In a given
simulation runF reaches a maximum and then remains c
stant. If the correlation among the components ofVW is small
enough, the maximum obtains for cosu51 ~the vectorVW be-
comes parallel toWW ). In a more general instance cosu is
smaller than unity. Thus we can adopt the approximat
~remember thatuVW u51)

Fmax5uWW u. ~10!

FIG. 5. Typical FPD Darwinian single-species fitness ver
time ~arbitrary units!. Note that the scale here is different from th
of Fig. 4.
-
e
a

-

is

-

n

One averages over all possible simulation runs. In orde
estimate the value of̂uWW u& we employ the result

uWW u25(
a

Wa
2 ~11!

and proceed to work in a mean-field fashion with

^uWW u&2.^uWW u2&, ~12!

so that

^Fmax&.A^uWW u2&. ~13!

This approach entails an error of the order of a stand
deviation ~for any quantity x we have sx

25^x2&2^x&2).
Now, with the notationkj[ki j ~see above the comment o
the species subindexi ) we have

Wa
25(

j
(

l
kjVa

j klVa
l , ~14!

so that, as no correlation exists between thek’s and theV’s,

^Wa
2&5(

j
(

l
^kjkl&^Va

j Va
l &. ~15!

Notice that thekj themselves are uncorrelated~they are ran-
domly chosen in@21,1#), so that

^kjkl&5^kj
2&d j l . ~16!

Summing up, we have

^Wa
2&5(

j
^kj

2&^Va
j 2&, ~17!

where ^kj
2&51/3 and^Va

j 2&.1/3 ~the last equality holds if
the correlation among theV’s is small enough that theVa

j ’s
themselves could have been randomly chosen in@21,1#).
Replacement of these results in Eq.~13! yields

^Fmax&.A(
a, j

1

9
5ACMN

9
. ~18!

We see that, independently ofC, M , or N, the Darwinian
average fitness is better~of a superior quality! than the cor-
responding coevolutive quantity.

In Sec. IV A we have discussed average and minim
times. In this respect, the situation here is of an instruct
character indeed: The coevolutive average fitnessvanishes
and the individual~coevolutive, single-species! fitness wildly
oscillates around zero~see Fig. 4!. On the other hand, in the
simple Darwinian stage the fitness swiftly increases mo
tonically until saturation is reached.

V. TIMING AND TIMES

In thinking about evolution, one confronts the question
how hard it may have been to ‘‘find’’ a particular structure
property. Such problems appear most trying when the st
ture or property in question requires the concerted action

s
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5902 57FERNÁNDEZ, PLASTINO, DIAMBRA, AND MOSTACCIO
large number of constituents. If we explore the different p
sibilities via random trials, the time needed to find such
structure increases exponentially with the number of ge
~or amino acids! that the task demands. As a corollary, ev
lutionary times much longer than the age of the Unive
would be required even for a ‘‘humble’’ bacteria. Let us gi
the name ofplausibility argumentto the previous statemen
often used in rebuttals of orthodox evolution in the man
of Darwin. For more detailed examples of the plausibil
argument see Refs.@8# and @9#.

In the light of the present calculations, serious doubts
cast over such a line of reasoning. For the sake of argum
let us consider a very simple scenario within the framew
of the NKC model: Our ‘‘fitness surface’’~or fitness land-
scape! exhibits just one maximum and we are concern
with an organism that needs several steps to approach
maximum. This is theK50 case. For each gene an optim
state exists~zero or one!, independently of the state of th
remaining genes, and we can assume, without loss of ge
ality, that the maximum fitness obtains when all sites are
state 1. Initially, our organism occupies a given~randomly
determined! position on the fitness surface and we aim to
it transported to the ‘‘best’’ site. According to our rules, w
randomly select one site and modify it if its state is 0~oth-
erwise, we do nothing!. This process is repeated over a
over. How many steps (S) are required~in average! to attain
maximum fitness? Actually,S!2N ~the number of distinct
chains!. The mean number of trials required to reach a p
ticular site~and thus be sure that it will be assigned a 1! is N
and we must repeat this procedureN times~in order to reach
all sites!. Thus S<N2. The problem with the plausibility
argument is that it ignores the fact that each time a benefi
mutation is retained the number of remaining configuratio
to be explored steadily decreases and with it the explora
time.

Of course, if instead of just 2, the number of states
gene is 20~the number of amino acids!, the argument con-
tinues to hold. The upper bound for the number of step
now AN2, with A the number of states per site. Figure
depicts the~average! results of a series~indeed, 1000 for

FIG. 6. Average number of steps required to reach maxim
fitness in theNKC model as a function of the chain lengthN ~for
K50 andA520). Each point is obtained by averaging the resu
of 1000 simulation runs. It is clearly seen that the required num
of steps tends to increase more slowly thanN2.
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each point! of simulation runs in theA520 case. A slower
rate of growth than in theAN2 case is appreciated. For su
faces of a more complex shape, the presence of mult
maxima allows, of course, for an even smallerS value.

Thus, in order to refute the plausibility argument one do
not need to appeal to the clever coevolution arguments in
manner of Bak@1# or to principles of self-organization, in th
manner of Kauffman@12# ~i.e., using the argument that man
properties of organisms may be probably emergent collec
properties of their constituents!. This is a correct argument
but not the only solution to the problem of ‘‘adequate’’ tem
poral lapses.

VI. CONCLUSIONS

We have attempted to show that the plausibility argum
needs careful re-examination, as it ignores the fact that, a
evolves, an organism retains favorable mutations, which c
siderably reduce the ‘‘accessible configuration space.’’
other words, ‘‘memory’’ constitutes an important evolutiv
feature that the plausibility argument disregards and mem
accelerates the evolutive process.

In turn, the coevolutive argument@10# asserts that in co-
evolution, each species dynamically deforms the fitness la
scapes being traversed by the other species in such a
that both can continue to climb uphill without getting stu
on local maxima. When they do get stuck, the maxima
turned into minima~due to coupling among landscapes!,
which can be climbed out of by simple Darwinian mean
Thus coupled species evolving by Darwinian means
bootstrap each other up the evolutionary ladder far more
ficiently than they can climb it alone. By competing with on
another, coupled species improve one another at incre
rates@4#.

In analyzing the coevolutive argument we should ask o
selves what the guarantee is that a species in a local m
mum will continue climbing uphill and reach a better max
mum. Our NKC results show that precisely the oppos
situation takes place. At this point, some important and
triguing results that tend to support the coevolutive argum
deserve mention and discussion@10,11#. For instance, Hillis
@11# considers the problem of designing fast and efficie
chips for the hardware implementation of common compu
tional tasks, such as sorting numbers. To this end, the c
nections among circuits of the sorting network are coded
one lets the resulting system evolve, evaluating the str
fitness according to~i! the number of circuit elements,~ii !
the connections required~the fewer the better!, and ~iii ! its
‘‘sorting’’ performance~with respect to a quantity offixed
test numbers!. This would mimic Darwinian evolution. Co
evolution here would entail letting the test numbers~to be
sorted! themselves evolve in such a fashion that thetest num-
ber fitnessis regarded as higher the lower the performance
the sorting network in sorting the test numbers. Hillis fou
that this coevolution between the sorting networks and
sorting problems led more rapidly to better solutions th
had been achieved by the evolution of sorting netwo
alone. Obviously, this result is at variance withours.

However, the biological evolutive dynamics is quite d
ferent from that found in optimization problems. The bi
logical evolutionary dynamics strongly depends on the sh

s
er



ig
s
e-

n
n

r

g
I

la
ro

o
-
e
s
r

pr
n
in
g
n

io
.

ti

t is,

r

e

tem

in-
u-
er

aks
cies.

-
ffect,
th-

n
ful’’
rt of
usly
lve

57 5903DYNAMICS OF COEVOLUTIVE PROCESSES
of the adaptive landscape@22#. In particular, the family of
NKC landscapes exhibits ultrametricity features and a h
degree of similitude to the energy surfaces of spin glas
@23–26#. In addition to its interpretation as a model of g
netic interactions in a multigene system, the KauffmanNK
model has been used to study adaptive somatic evolutio
the immune response@27#. In other words, this model ca
probably be counted among the ones that most closely
semble biological reality.

On the other hand, landscapes arising by solving en
neering problems are quite different from biological ones.
the former the ‘‘genotype-phenotype’’ mapping is of a re
tively simple character. Parameters of the engineering p
lem to be optimized are coded in the genotype in more
less straightforward fashion~for instance, circuit connec
tions!, while in a biological scenario the phenotype aris
from the genotype as a final result of the morphogene
process and the mapping is anything but straightforwa
morphogenesis being a very complex phenomenon that
duces a phenotype as both the temporal and spatial co
quences of the structural and catalytic properties of prote
encoded in time and space by the genome and actin
concert with both nonprotein materials and physical a
chemical forces, to yield the resulting organism.

Another crucial difference between engineering and b
logical ‘‘outputs’’ is worth mentioning in this connection
The coding required in the former is so~relatively! ‘‘trivial’’
that, in the case one uses genetic algorithms as evolu
s
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ones, it permits two individualsplaced far apart on the land-
scapeto generate a new one by recourse to crossover, tha
to interchange parts of their respective ‘‘strings’’~Hillis ex-
ample!. In biology this is evidently an impossibility~think of
cats and dogs, for example!. The search for new and bette
individuals is of an exclusivelocal nature. Regarded in this
light, the results of Ref.@11# appear to be less impressiv
than at first sight.

No one can deny, of course, that the terrestrial ecosys
undergoescoevolutiveprocesses as a~quite complex! dy-
namical system. Our calculations in two model scenarios
dicate, however, thatcoevolution does not constitute the cr
cial dynamical factorthat accelerates evolution but rath
that the ecosystem evolves notwithstanding the fact thatco-
evolution may actually ‘‘retard’’ things. In a coevolutive
system, organisms can keep evolving forever since the pe
may disappear because of the variations of the other spe
Thus the species can keep climbing~and may be becoming
more complex! without necessarily becoming more fit. In
deed, the mechanism has been called the red queen e
referring to the red queen and Alice who kept running wi
out getting anywhere.

Simple Darwinian evolution is quite efficient by itself. I
some sense, then, one may imagine that for ‘‘success
species, the whole ecosystem can be regarded as a so
quasistationary mean field, so that they can advantageo
exploit the original Darwinian mechanism so as to evo
rapidly.
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