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Dynamics of coevolutive processes
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Two different models for biological evolution that exhibit critical self-organization and punctuated equilib-
rium are studied with a view to numerically compare two possible types of adaptive dynamics: A species can
evolve towards states of increasingly better adaptative abilities via the simple, original Darwinian scenario
(evolution in a stationary environmerdr in the recently conceived coevolutive fashion. A numerical study of
these two types of adaptative dynamics is performed, within the framework of two distinct mathematical
models of evolution[S1063-651X98)02205-3

PACS numbes): 87.10+e, 05.40+]

I. INTRODUCTION the word “evolution” to describe the traditional Darwinian
point of view: Species “adapt” to a fixed environment, to
In recent years there has been great activity in the study oihich the remaining species, of course, “contribute.” “Co-
physical models able to mimic biological evolutionary pro- evolution,” instead, refers to a dynamical process in which
cesses. As a consequence, much light has been shed on dil species simultaneously “evolve,” that is, a single species
verse features of the rich Darwinian landscape. Of coursanust adapt to a changing environment in a self-consistent
intriguing problems still await elucidation. Among them we fashion.
single out here the following one. It is generally accepted Some recent results indicate that the latter adaptive
that the traditional view of Darwinian evolution, according to mechanism yields better results than the former in some evo-
which the most fit of random mutants are selected, faces htive scenariod10,11. However,a test of this assertion
major problem{1-7]: It is much too slow to account for real within the context of physical models (coevolutive dynamical
evolution Bak has lucidly described the difficulfit]: If, for systems) remains to be performd&kemedying this situation
the sake of argument, we imagine the outer world froden  constitutes the leitmotif of the present effort, where we tackle
a while) and try to construct from scratch an equally fit spe-the evolution vs coevolution competitigithe investigation
cies by recourse tengineering techniques rather than by of which should motivate any worker in the figlth numeri-
evolution we will be forced to accept that eons are neededcal terms by studying the different dynamics within the
By starting at a random configuration one certainly will framework of two different modeldi) the celebratedNKC
reach a wrong and much less fit maximum. It would be nec{the accepted terminologynodels of Kauffman and Johnsen
essary to systematically go through all configurations, in{12,13, which have proved to be of great utility in explain-
volving exponentially large times. Shapi®] and Hoyle and ing many evolutionary features of the terrestrial ecosystem
Wickramasinghe[9] have developed similar argumentive (for example, radiation and stasis as generic properties, the
lines. Cambrian explosion, Permian quiescence, and rederivation
Coevolution as an alternative to simple evolution in a of Von Baer's law$[12,14], and(ii) recently a more general
fixed environment, has been proposed as a way out of thimodel of biological evolution15,1€6 that exhibits robust
dilemma. The dynamical script for such a process reads awitical behavior with punctuated equilibriufii7] without
follows: Individual species adapt in slow fashion to a chang-external tuning. Interesting “realistic” features of this model
ing environment without ever climbing high fitness barriers,include the prediction of power laws governing the extinc-
which allows for a fast evolutionary procef$]. Quoting  tion distribution curve$18] and its ability to reproduce Sep-
Bak’s words[1], “What the individual sees as his superior kosky's evolutive activity curve$19] and lifetime species
fitness may better be characterized as a self-consistent intdistribution curve[19,20 constructed on the basis of fossil
gration into a complex system. Biology constructed the sorecords.
lution to the fitness problem together with the problem itself. We intend to provide some answers concerning the co-
It is much simpler to construct a complicated crosswordevolution vs evolution question by comparing fitnesses re-
puzzle by a coevolutive process than to solve it by trial andsulting from different dynamicsi.e., coevolutive vs evolu-
error.” tive ones as applied within the framework of a given model,
In order to fix the terminology we will agree to reserve in the two cases enumerated above. “Fitness” is a relative
concept and can be meaningfully applied only within a given
ecology. Thus the mean fitness of some species in a given
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scape is definedfor instance, by giving theN, K, andC Consider now single-speci¢again thejth one, sayevo-
values in the case of the Kauffman modelthe model's lution. The site states of the remainiij— 1 ones are “fro-
statistical nature is fixedas, for example, the number of zen.” In these circumstances the evolutive process may be
local maxima and their distribution, sdé&2]). Given the visualized in terms of an “adaptive walk” on a rugged “fit-
landscape, different adaptive strategiasd diverse dynam- ness landscape{on the vertices of ailN-dimensional Bool-

ics) become possiblée.g., different mutation rates and ge- ean hypercube This adaptive walk stops if the species gets
netic material exchange among individydtsorder to attain  trapped at a local maximum. Kauffman shoj¢g that the
either a global maximum or a “good” local one. The effec- ruggedness of the fitness landscape grows \itliin the
tiveness of recombination, for instance, depends in subtlgeneticist's parlancek measures the richness of epistatic
ways upon the ruggedness of the adaptive lands¢spe interactions among the components of the systefor K
Chap. 2 of(12]). It is then obligatory to compare strategies =2 the structure of the fitness landscape is such thaFthe

for fixed values of the above parameters, i.e., for a given typenean valug(F;), evaluated over a large number of distinct
of surface, and such will be our philosophy in studying evo-simulation runs is maximized.

lution vs coevolution. Fitness is a landscape-related concept. In a coevolutive systenti.e., all species simultaneously
Comparisons are to be made for the same surface. It shoulslolve), we need to consider the fact that both the fitness and
be remarked that, within the present context “more fit” doesthe fitness landscape of each species become functions of
not mean “more complex.” We are not discussing complexwhat happens with thether species(by virtue of the C
evolution here. The “complexity” of our “organisms” re- couplingg. Thus, because of the couplings, an adaptive
mains approximately constant in our model insofar as thenove by one species projects onto the fitness landscapes of
number of “genes” behaves in such a manner. A termino-the other species and alters those fitness landscapes more or
logical point merits some discussion. We know that the codess profoundly. Over time, each species jockeys uphill on its
evolutionary picture is not incompatible with Darwin’s own landscape and thereby deforms the landscapes of its
theory since the species are still evolving by random mutaecological neighbors. Any such move by one species may
tions and selection of the fitter variants, but in a variableincrease or decrease the fitness of each neighbor on the lat-
landscape. The coevolutionary picture, however, may haveer's landscape and alter the uphill adaptive walks accessible
some consequences at the macroevolutionary level, such &sthat neighbor.

punctuated equilibrium, that Darwin apparently was not |t is interesting to mention thgtl2] in the coevolutive
aware of. We shall differentiate between “simple” evolu- scenario, the average value ¢f;) over theM different

tion, or the original Darwinian mechanism, and coevolutlon,spec|eg<<|:>> becomes a maximum for sonevalue (let us

or the neo-Darwinian one. call it K% that depends upoM, N, andC. For K=K° the
system evolves at the “edge of chaos,” that is, for-K°
Il THE NKC MODEL the ecosystem behaves as a quasiordered syg®mmost

species freeze over and just a few undergo significant alter-
In Kauffman and Johnsen’SIKC models[12,13 each ationg. On the other hand, fok <K® most species exhibit

species is represented by BRsite chain. The state of each variations during the evolution process, with some frozen
site (or geng may adopt one of two possible values: zero orislands. The edge of chaos corresponds to that situation for
one. The degree to which a species is adapted to the envivhich a frozen component percolates across and covers the
ronment is numerically measured by the so-called fitnE3s ( ecosystem. It has been analytically shown, for the special
variable. The larger th& value, the better our species is instanceK=N-1 [5], that under some conditions a phase
adapted to its environment. For theh speciesF, is ob-  transition takes place from a frozen to a chaotic phase.
tained by summing over the site contributions. The site con-
tribution, in turn, depends ofi) the state of otherK, say Ill. FERNA NDEZ, PLASTINO, AND DIAMBRA’'S MODEL
genes of thekth chain and(ii) the states obther species’

genes(amounting toC genes, sagy The fithess contribution _ - ) ;
of each site, for each of the“2C*1 combinations of states model of Ref.[15]. We deal withM distinct, interacting

of itself, on the one hand, and each of #e C other sites biological species, each of which is represented by a vector

influencing it, on the other, is assigned at random at thén RN. The component¥’, of V' represent different pheno-

moment of switching on the simulation process. At this mo-typic features &,3, .. .) that are to be affected and modi-

ment, theK + C sites that are to influence any particular sitefied by the evolutive process. The degree to whichithe

are randomly chosen as well. This choice is not modifiedspecies is “adapted” to the environment is represented by a

afterward, during the course of the simulation process. In iguantityF;, to be called its fitness:

we shall deal withM speciega number that remains fixgd N N
The evolutive process proceeds as follows. We start from _ TRV P .

a random initial configuratiofi.e., theN; initial site states, F'_z azﬁ 9apVa Vﬁ+; Vy Ay 1= M,

i=1,... M, are randomly chosenIn eachof a (long) se- (1)

ries of time steps a particular specigise jth, say and one N

of its associated sites are both randomly selected. This sithere the hypermatrig,; provides the details of the inter-

state is modified and th@ew) F; value is computed. If, as a species interaction and the second summand on the right-

consequence of this mod|f|cat|oﬁ grows, this change in hand side is an “environmental” onésee below. We as-

the site state is retained. Other\lee it is discarded and thseumeg = —g“ This is a reasonable assumption because

site state is returned to its previous condition. if the « feature of the speciésgives it a competitive edge

We consider now the Ferndez-Plastino-Diambré-PD)
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against theB feature of thej species, the latter gives it, of
course, a competitive disadvantage against the fo(syen-
biosis is excluded TheA'7 matrix mimics the environmental
influence(such as climate and geograptoyer they feature
of theith species.

Of course, the components uf must necessarily exhibit
some degree of correlation, as genes are simultaneously in-
volved in several phenotypic features. We represent this cor-
relation by recourse to mappings between a sdét#ol real
parameters and each of these components, i.e.,

Fitness

fgrap, ... a—Vp, 2)
. 0 200 400 . 600 800 . 1000
that is, Time
Viﬁ:fﬁ(aio! o yaik), €) FIG. 1. A typigal exgmple of _single-speci_eNKC fitness evo-
lution (vertical axis, arbitrary uni}s The full line corresponds to
. . . i i . . coevolutive results, the dashed line to a simple Darwinian scenario.
with f; an arbitrary function. The set, . . . ,a, definesin In both cased = 20, N=10. K =4, andC—3.

fact thei species. As a result of biological mutations, these
parameters are allowed to vary with time.

The components of denote different phenotypic features
of the species that this vector represents. These features
correlated, via th&'s, in the manner just described. Genetic
changes, here mimicked by modifications in thevalues,

wherek;; = —k;; . A given percentage of thig;’s is set equal
to zero. The remaining;;’s are randomly chosen within
e 1,1] (for i<j). These values are kept constant through-
out. We callC the fraction of nonvanishink;;’s. These sim-

drive th uti Th lati st " lifications notwithstanding, a complex enough dynamics en-
rive the evolutive process. 1nhe correlations Just mentioneg,,aq ynat can account for important details of fossil records.

cpnstitute an ess_ential aspect of the mode|. Without them, As polynomials are the basis of any reasonable function
given species mighteventually attain, after a series of ap- space, the “correlation functions” discussed above can be

g;%r;riitol‘lt T,:tatfr??,nﬂ:frr‘eOt@i];Lea;sr?nwa:;tz(;gvg'bTehiS chosen in a simple and general fashiorkagegree polyno-
pp : g mials[cf. Eq. (3)]

understood as reflecting uncorrelated genetic modifications
(changes in one or more bases in one or more gendsle k

changes in theV’s represent the concomitant phenotypic fﬁ=2 ax", x=pgIN, (6)
modifications that, to a greater or lesser extent, will be mu- n=0

tually correlated.

The system evolves in the following fashion. We start™° that

with an arbitrary initial configuratiorfthe a;'s are randomly k

chosen withir{ —1,1]) and, in each of a series of time steps, Vi= > al(BIN)".
mutation effects are mimicked by slightly modifying thgs n=0

for the Ith species. Both the selection lofind the nature of

the changes are random. The conditjdf=1 is enforced IV. COMPARATIVE DYNAMICS

s0 as to avoid unrestricted growtiith time) of |V|.

A particular mutation(change in a givema) is “ac-
cepted” if it increases the corresponding fitnéas a conse- We present here our main results, beginning with those
quence of such a mutatiof, grows. The a change is re- Obtained with reference thNKC models. We compare evo-

tained in this case. Otherwise it is discarded andaifeend lutive vs coevolutive dynamics within a constant scenario,
up with their previous values. that is, for identical values oM, N, K, andC (remember

Extensive numerical studies suggest that such a systefiat we compare different adaptive dynamiost different
never reaches an equilibrium situation, which could beecologies.

A. NKC model

guessed from the skew symmetryg [21]. The number of The typical temporal evolution dt for a single species is
speciesM is kept constant for the sake of simplicity. depicted in Fig. 1. We také! =20, N=10, K=4, andC
Also for the sake of simplicity we choose, as[it6] (i) =3. In the coevolutive scenarib starts increasing rapidly
our hypermatrix in the form and then stabilizes itself, with oscillations around some fixed
value. After 30 000 generations no deviations from this pat-
923: Kj Oup (4) tern are appreciated, i.e., equilibrium is not reached. Figure 1
also displays, for the sake of comparigatentical values of
- M, N, K, and C), the single-species fitness of a given
and (ii) A'7=0. Thus Eq.(1) reduces to ) gle-sp 9

species in a Darwinian evolutionary scenard { 1 species
M frozen). Equilibrium is rapidly reached.
Fi:E kij\‘;i_\‘/’j' i=1 ... M. (5) _ These r_esults can be better understood with reference to
i=1 Fig. 2, a fitness versus plot. Here we study the coevolu-
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FIG. 2. Average equilibrium fitness versis (arbitrary unit3. FIG. 3. Relevant “evolution times” versu (arbitrary units.

The curves, from top to bottom, correspond, respectively, tine ~ Top curve, average timésee the tejtfor a coevolutive system;
Darwinian scenario, with the maximum number of mutations permiddle curves, minimum evolutionary time requirézke the text
generation(MMs) equal to 4;b, the same as but with the MMs  for coevolutionary stability(full line) and maximum Darwinian
equal to unity.c, the same ab but for a coevolutive scenario; and time needed to attain a stable adaptive platetoited ling (they
d, the same as but with the MMs equal to 4. are of the same order of magnitydewer curve, Darwinian aver-

age time.

tionary mean fitnes§ F)) and the Darwinian meafF). The
average over distinct simulations is taken by running 30 ofverage time is an average taken over all species. In the
them in coevolutive scenarigaveraging over all coevolving coevolutive case, the average time is the time needed to
species and 100 in Darwinian evolutive ong80 000 time  reach, for the first time, thef .., value corresponding to a
steps have been taken in the oscillatory regime of the formegiven value ofK. As suggested by Fig. 1, the former average
in order to compute mean valyes time is smaller than the latter. Additionally, we display in
Features already described by Kauffman are also presefig. 3 themaximumtime needed to reach a stable evolutive
in Fig. 2. The Darwinian mutant variatF) exhibits a peak plateau(Darwin scenarip and compare it to the minimum
at K=2. On the other hand, the coevolutiyéF)) peak is time required to attain a stable situati@lbeit with oscilla-
attained at som€-dependenk®, where it is supposed that tions) in the coevolutive case. The conclusions reached
the system evolves at the edge of chaos: RorK® the above with reference to the average time still apply. These
evolutionary process is a “poor” one, as the system isresults do not change if we modifgingly or jointly) C, M,
mostly frozen, forK<K° the system behaves in a rather and/orN.
chaotic fashion, which diminishes its adaptive capacities.
Assume now that species evolve by changing the states of B. FPD model

up o n sites in gach timg step, the qctual number .being We consider now the FPD modg9,10]. Single-species
rgndomly determme.d. An.|mportant p0|_nt tq be r.nent'onedfitness is the subject of Figs. 4 and 5, where time evolution is
with regard to the simulations reported in Fig. 2 is thta¢ o jiag M=17,N=7, C=0.5, andk =5 in both figures

fitness level reached by the coevolutive system is smalle#r- : . . :
- - S igure 4 corresponds to an arbitrary species coevolving with
than the one found in the Darwinian procesis difference g P ysp 9

is rather small for systems that evolve in such a fashion that
only one gene is allowed to vary in each stgpecies “ex-
plore” variations in just one of the sites per steput grows
when we allow for largen values. This is seen in Fig. 2 for
n=4 situations, a better simulation of biological “reality.”
The F value of species evolving in a frozen environment
augments because the larger exploration step allows for es-
cape from the trapping by some local maxima that shorter
exploration steps would not be able to evade. The coevolu- -1
tive F, instead, does not necessarily benefit from larger ex-
ploration steps. The environment also changes rapidly and an
accelerated “red queen” effect obtaifg].

Deviations with respect to thE mean value are rather
insensitive to the value df. In the coevolutive scenario the 3L . . L . L . L
standard deviation varies between X B 2 and 3x 10 2. 00 2000040007 60d07  BONIO° 1.0x10°
In the Darwin scenario variations betweer Z0~2 and 9.5 Time
X 10~2 are encountered. FIG. 4. Typical coevolutive single-species fithess versus time

The average time needed to reach a stable evolutive plaarbitrary units for the FPD model M=17, N=7, C=0.5, and
teau is plotted in Fig. 3. In the simple Darwinian case, thek=5).

Fitness
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o’ One averages over all possible simulation runs. In order to
gt estimate the value affW|) we employ the result
=L

WP=2 Wi (11

and proceed to work in a mean-field fashion with

(IW2=(|W[?), (12)
2k so that
a3l N 1 1 N ) N i N <Fmax>2 V<|W|2>- (13)
0.0 2.0x10* 4.0x10* 6.0x10* 8.0x10 1.0x10°

Time This approach entails an error of the order of a standard
deviation (for any quantityx we have o2=(x?)—(x)?).

FIG. 5. Typical FPD Darwinian single-species fitness Versusow, with the notatlork k (see above the comment on
time (arbitrary unit$. Note that the scale here is different from that o species subindey We have

of Fig. 4.

the remaining ones, while Fig. 5 depicts Darwinian evolution ny: 2 2| kJVJaKIVIa’ 14

in a frozen environmenithe remaining species do not .

evolve. Strong fitness oscillations are appreciated in the coxg that, as no correlation exists betweenktseand theV'’s,

evolutive case, while, in the Darwinian scenario, the single

species fitness grows swiftly and monotonically, reaching a

maximal plateau. (W2y=2, Z (kiki (VA V). (15
The time-average fitness in the coevolutive situation van- .

ishes[cf. Eq. (5); in summing oveii, the antisymmetric na- Notice that thek; themselves are uncorrelatétiey are ran-

ture of thek;; enforces this result independently of t8eM,  domly chosen iff —1,1]), so that

or N values. In the Darwinian instance, the time-average

fitness is estimated as follows. The single-species fitness is (kjk|)=(kj2>5j, . (16)
given by
Summing up, we have
Fi=> kiV'Vi= E I=> VLY ki V]
i j#i 1] o a j#i 1 <Wi>:2 <k]2><V]D[2>, (17)
J
— RYY
_20:’ VaWe. @) where (k?)=1/3 and(V!?)=1/3 (the last equality holds if
the correlation among the’s is small enough that th\a”
with themselves could have been randomly chosep-d,1]).

Replacement of these results in E#3) yields

W,=> k; Vi, 8

v 1 CMN
= F nax) = = 18
7 (Frod=\2 5= Vg (18

As just one species evolves here, the species subindaR  \ve see that, independently f, M, or N, the Darwinian
be disregarded without loss of generality. Thus average fitness is bettéof a superior qualitythan the cor-
responding coevolutive quantity.

In Sec. IV A we have discussed average and minimum
times. In this respect, the situation here is of an instructive
character indeed: The coevolutive average fithemsishes

. - > , and the individualcoevolutive, single-specigfitness wildly
whered is the angle between the vectdfaindW. Inagiven  ,qgjjjates around zertsee Fig. 4 On the other hand, in the

simulation runF reaches a maximum and then remains con simple Darwinian stage the fitness swiftly increases mono-
stant. If the correlation among the componentS/ofs small  tonically until saturation is reached.

enough, the maximum obtains for @bsl (the vectorV be-

comes parallel to). In a more general instance @ V. TIMING AND TIMES
smaller than unity. Thus we can adopt the approximation

(remember thatV|=1)

F=>, V,W,=|V||W|cos, 9)

In thinking about evolution, one confronts the question of
how hard it may have been to “find” a particular structure or
property. Such problems appear most trying when the struc-

Fma— |W|. (10 ture or property in question requires the concerted action of a
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25000 each point of simulation runs in theA=20 case. A slower
rate of growth than in thN? case is appreciated. For sur-
faces of a more complex shape, the presence of multiple
maxima allows, of course, for an even smalfevalue.

Thus, in order to refute the plausibility argument one does
not need to appeal to the clever coevolution arguments in the
manner of BaK1] or to principles of self-organization, in the
manner of Kauffmaf12] (i.e., using the argument that many
properties of organisms may be probably emergent collective
properties of their constituentsThis is a correct argument,
but not the only solution to the problem of “adequate” tem-
poral lapses.

20000

15000

10000

Mean Time to Reach Optima

0 . 50 . 100 150 . 200
N VI. CONCLUSIONS

FIG. 6. Average number of steps required to reach maximum We have attempted to show that the plausibility argument
fitness in theNKC model as a function of the chain length (for needs careful re-examination, as it ignores the fact that, as it
K=0 andA=20). Each point is obtained by averaging the resultsevolves, an organism retains favorable mutations, which con-
of 1000 simulation runs. It is clearly seen that the required numbesiderably reduce the “accessible configuration space.” In
of steps tends to increase more slowly théh other words, “memory” constitutes an important evolutive

feature that the plausibility argument disregards and memory
large number of constituents. If we explore the different pos-accelerates the evolutive process.
sibilities via random trials, the time needed to find such a In turn, the coevolutive argumeftQ] asserts that in co-
structure increases exponentially with the number of genesvolution, each species dynamically deforms the fitness land-
(or amino acidsthat the task demands. As a corollary, evo-scapes being traversed by the other species in such a way
lutionary times much longer than the age of the Universehat both can continue to climb uphill without getting stuck
would be required even for a “humble” bacteria. Let us give on local maxima. When they do get stuck, the maxima get
the name oplausibility argumento the previous statement, turned into minima(due to coupling among landscapes
often used in rebuttals of orthodox evolution in the manneiwhich can be climbed out of by simple Darwinian means.
of Darwin. For more detailed examples of the plausibility Thus coupled species evolving by Darwinian means can
argument see Ref§8] and[9]. bootstrap each other up the evolutionary ladder far more ef-

In the light of the present calculations, serious doubts argiciently than they can climb it alone. By competing with one
cast over such a line of reasoning. For the sake of argumendnother, coupled species improve one another at increased
let us consider a very simple scenario within the frameworkrates[4].
of the NKC model: Our “fitness surface'{or fitness land- In analyzing the coevolutive argument we should ask our-
scap¢ exhibits just one maximum and we are concernedselves what the guarantee is that a species in a local maxi-
with an organism that needs several steps to approach thisum will continue climbing uphill and reach a better maxi-
maximum. This is th&K=0 case. For each gene an optimal mum. Our NKC results show that precisely the opposite
state existgzero or ong independently of the state of the situation takes place. At this point, some important and in-
remaining genes, and we can assume, without loss of genetriguing results that tend to support the coevolutive argument
ality, that the maximum fitness obtains when all sites are irdeserve mention and discussid®,11]. For instance, Hillis
state 1. Initially, our organism occupies a giveandomly  [11] considers the problem of designing fast and efficient
determinegl position on the fitness surface and we aim to getchips for the hardware implementation of common computa-
it transported to the “best” site. According to our rules, we tional tasks, such as sorting numbers. To this end, the con-
randomly select one site and modify it if its state i§odh-  nections among circuits of the sorting network are coded and
erwise, we do nothing This process is repeated over andone lets the resulting system evolve, evaluating the string
over. How many stepsS) are requiredin averageto attain  fitness according tdi) the number of circuit elementsii)
maximum fitness? ActuallyS<2N (the number of distinct the connections requiredhe fewer the better and (iii) its
chaing. The mean number of trials required to reach a par+sorting” performance (with respect to a quantity diixed
ticular site(and thus be sure that it will be assigned)asiN test numberns This would mimic Darwinian evolution. Co-
and we must repeat this procediNeimes(in order to reach evolution here would entail letting the test numbéis be
all siteg. Thus S<N?2. The problem with the plausibility sorted themselves evolve in such a fashion thattést num-
argument is that it ignores the fact that each time a beneficider fithesss regarded as higher the lower the performance of
mutation is retained the number of remaining configurationghe sorting network in sorting the test numbers. Hillis found
to be explored steadily decreases and with it the exploratiothat this coevolution between the sorting networks and the
time. sorting problems led more rapidly to better solutions than

Of course, if instead of just 2, the number of states pehad been achieved by the evolution of sorting networks
gene is 20(the number of amino aciglsthe argument con- alone. Obviously, this result is at variance wabrs
tinues to hold. The upper bound for the number of steps is However, the biological evolutive dynamics is quite dif-
now AN?, with A the number of states per site. Figure 6 ferent from that found in optimization problems. The bio-
depicts the(average results of a seriegsindeed, 1000 for logical evolutionary dynamics strongly depends on the shape
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of the adaptive landscad@2]. In particular, the family of ones, it permits two individualglaced far apart on the land-
NKC landscapes exhibits ultrametricity features and a higrscapeto generate a nhew one by recourse to crossover, that is,
degree of similitude to the energy surfaces of spin glasset interchange parts of their respective “string@illis ex-
[23-26. In addition to its interpretation as a model of ge- ample. In biology this is evidently an impossibilitthink of
netic interactions in a multigene system, the KauffnhNid  cats and dogs, for exampleThe search for new and better
model has been used to study adaptive somatic evolution iimdividuals is of an exclusivéocal nature. Regarded in this
the immune responsg27]. In other words, this model can light, the results of Ref[11] appear to be less impressive
probably be counted among the ones that most closely rehan at first sight.
semble biological reality. No one can deny, of course, that the terrestrial ecosystem
On the other hand, landscapes arising by solving engiundergoescoevolutiveprocesses as éjuite complex dy-
neering problems are quite different from biological ones. Innamical system. Our calculations in two model scenarios in-
the former the “genotype-phenotype” mapping is of a rela-dicate, however, thatoevolution does not constitute the cru-
tively simple character. Parameters of the engineering protzial dynamical factorthat accelerates evolution but rather
lem to be optimized are coded in the genotype in more othat the ecosystem evolves notwithstanding the fact¢bat
less straightforward fashioffor instance, circuit connec- evolution may actually “retard” thingsIn a coevolutive
tions), while in a biological scenario the phenotype arisessystem, organisms can keep evolving forever since the peaks
from the genotype as a final result of the morphogenesisay disappear because of the variations of the other species.
process and the mapping is anything but straightforwardThus the species can keep climbitand may be becoming
morphogenesis being a very complex phenomenon that pranore complex without necessarily becoming more fit. In-
duces a phenotype as both the temporal and spatial consdeed, the mechanism has been called the red queen effect,
guences of the structural and catalytic properties of proteinggferring to the red queen and Alice who kept running with-
encoded in time and space by the genome and acting iaut getting anywhere.
concert with both nonprotein materials and physical and Simple Darwinian evolution is quite efficient by itself. In
chemical forces, to yield the resulting organism. some sense, then, one may imagine that for “successful”
Another crucial difference between engineering and biospecies, the whole ecosystem can be regarded as a sort of
logical “outputs” is worth mentioning in this connection. quasistationary mean field, so that they can advantageously
The coding required in the former is $@latively) “trivial” exploit the original Darwinian mechanism so as to evolve
that, in the case one uses genetic algorithms as evolutiviapidly.
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